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The theory of the pair-functional ensemble is developed to provide estimates of

the pairing forces from experimental X-ray intensities. The statistical mechanics

of the grand ensemble leads to a diagram expansion for the forces, in terms of

the direct correlation function of the ¯uid ensemble combined with a series of

small higher-order corrections. A simpler treatment, based on a biased Gaussian

probability distribution, gives approximate formulae, valid for re¯ections of any

type in all space groups. The role of symmetry is analysed. The entropy of an

asymmetrical ensemble can always be increased by averaging it over equivalent

positions of the atoms in the true space group, with the result that the atoms

naturally tend to adopt the highest symmetry compatible with the data. In a cell

with different types of atom, the atoms experience a single force function but

they interact with a strength proportional to the products of their scattering

factors. Numerical estimates are given for typical cases.

1. Introduction

The pair-functional theory is the basis of a new direct method

for solving the structures of small molecules [McLachlan

(1999); McLachlan (2001a,b) (referred to below as papers I

and II)]. It uses a unique statistical ensemble of atoms that

interact through a speci®c set of long-range pairing forces. The

structure is solved by searching the ensemble for well paired

clusters of atoms and this needs a rather accurate initial esti-

mate of the pairing force. We use the term pairing force as the

name for the functions  �u� in real space or  E�H� in reci-

procal space, and total pair potential for the function 	N ,

which is the sum of the pair interactions of all the atoms in the

cell. The pairing force (see paper I) is a statistical force,

de®ned in terms of the gradients of the ensemble entropy. In

this paper, we show how to calculate the normalized Fourier

components  E�H� of the pairing forces from the observed

X-ray intensities of the measured re¯ections, H.

There are several possible ways to deduce these forces. The

most rigorous is from the many-body statistical mechanics of

¯uids (Hansen & McDonald, 1986), which uses the grand

canonical ensemble with a ¯uctuating number of atoms

(Mayer & Mayer, 1940; Hill, 1956). This theory produces exact

in®nite-order perturbation expansions for the forces in terms

of many-particle diagrams (Morita & Hiroike, 1961; De

Dominicis, 1962, 1963). The ®rst term in this expansion is the

direct correlation function of the ¯uid (Ornstein & Zernicke,

1914).

A far simpler approach is to use a general maximum-

entropy argument which works with biased probability

distributions (Jaynes, 1978; Levine & Tribus, 1978). This

exploits the well known Gaussian probability distributions of

the structure factors. The argument, based on the concept

of unbiased natural probability distributions described in

Appendix C, agrees with the ®rst level of approximation in the

many-body theory, and makes it possible to derive a more

general approximate pairing force for molecules which

contain several types of atom.

A third purely numerical way to estimate the forces would

seek to minimize the dual function of the ensemble (Agmon et

al., 1978; Gill et al., 1981; Luenberger, 1984), which is de®ned

in paper I (McLachlan, 2001a). Unfortunately, this method

would need as much computation as a full solution of the

structure.

We also consider the important effects of space-group

symmetry on the pairing forces. The correct way to build a

pair-functional ensemble in a cell with symmetry is to use

interacting systems of symmetry-related atom clusters

(Castleden, 1987) in equivalent positions (International Tables

for Crystallography, 1987). These must be set up with one of

the standard allowed origins (Hauptman & Karle, 1956;

Hauptman, 1972; Giacovazzo, 1980). However, it is also

permissible to map the atoms onto a cell of lower ®ctitious

symmetry, such as P1. Thus, in a cell where the measured data

indicate that the space group is actually G, it is possible to

represent the constrained paired-atom ensemble in various

alternative ®ctitious ways, using subgroups of G with lower

symmetry. We shall show below that the ensemble with the

true symmetry G always has a higher entropy than any of the

others. This means that the pair interaction forces should

normally enable a random asymmetric starting set of atoms to

adapt itself to the true symmetry during a search for the

correct structure. When the symmetry arguments and the

biased Gaussian approximation are combined together they



lead to a set of simple rules (Stewart & Karle, 1976; Giaco-

vazzo, 1980) that give the approximate pairing force for any

class of re¯ection.

Higher-order corrections to the pairing forces will often be

small. The Gaussian approximation holds accurately for all but

the weakest and strongest re¯ections and the pairing force for

a particular re¯ection H is only slightly affected by the

intensities of other symmetry-independent re¯ections K.

Another kind of correction is sometimes important for tightly

packed atoms at short distances, where exclusion effects come

into play. The classical phase probability distributions of

crystallography (Hauptman & Karle, 1953; Naya et al., 1965;

Hauptman, 1975) are based on the properties of independent

atoms scattered randomly throughout the cell. Real atoms

behave more like hard spheres (Hansen & McDonald, 1986)

with a certain collision diameter and exclude one another from

the overlap regions. The last topics considered in this paper

are numerical estimates of the total pair potentials and the

complete ensemble entropies under typical conditions.

The main mathematical proofs and de®nitions will be found

in the Appendices.

2. Many-body theory of pairing forces

2.1. The grand ensemble

The many-body theory is based on the particle distribution

functions of a spatially uniform grand ensemble, as described

in Appendix A, where the variable number of atoms has an

average value equal to N, the ®xed number of atoms in the

target molecule. To set up the ensemble, we ®rst have to

convert the observed intensities Iobs�H� of the measured

re¯ections H, with H 6� 0, into normalized structure intensities

jEobs�H�j2 (Blessing et al., 1998). These will be the target

intensities for the representative ensemble, so that

jT�H�j2 � jEobs�H�j2: �1�
The grand ensemble distributions are usually expressed in

terms of fractional cell coordinates, with a two-particle

correlation function k�2��u� and a normalized pair-correlation

function h�2��u�, which both describe pairs of particles at

positions x and y separated by a shift vector u. These functions

are related by the equation

h�2��u� � �1=N2�k�2��u� ÿ 1: �2�
The pair-correlation function of the ensemble has Fourier

components ĥ�2��H� and these components have to match the

target intensities.

ĥ�2��H� � �1=N�fjT�H�j2 ÿ 1g: �3�
In other words, the originless Patterson function of the

ensemble must agree with that deduced from the measured

data. The constrained grand ensemble behaves like the

Boltzmann distribution of a set of atoms that interact through

a unique pairing force  �u�, as outlined in Appendix B and

paper I (McLachlan, 2001a). The pairing force is determined

implicitly as a functional of all the target intensities. In the

grand ensemble, N is not ®xed, and in the remainder of this

section we must understand N to represent the ensemble

average hNi.

2.2. The direct correlation function

The statistical theory of ¯uids provides a well known

perturbation analysis for the variations of the particle distri-

bution functions under weak changes of the potentials

(Hansen & McDonald, 1986). If the perturbation is a change

of the single-particle potential energy, then Yvon's theorem

(Yvon, 1958) states that an initially uniform ¯uid with mean

density N, subjected to a potential ÿ��y� at a ®xed point y,

undergoes small changes of probability density ���1��x� at

other points x. In our ensemble, the equivalent equation is

���1��x� � N���x� � N2�
R

h�2��xÿ y���y� dy; �4�
where � � 1=kT � 1 is the effective inverse temperature. The

density changes consist of a local single-particle effect at the

point x itself, combined with an indirect long-range two-

particle effect proportional to the unperturbed pair-correla-

tion function h�2��u�. The signs in the Yvon equation above are

both positive because of the positive sign of the Boltzmann

factor exp��	� in the paired-atom ensemble. The more

complicated changes of h�2��u� produced by introducing

a weak two-particle potential  �u� into an initially perfect

gas without interatomic forces are expressed in terms

of the Ornstein±Zernicke direct correlation function

c�2��x; y� � c�2��u�, which is a function of the separation of the

points u � xÿ y (Ornstein & Zernicke, 1914). This function is

de®ned implicitly by the non-linear convolution relation

h�2��u� � c�2��u� � N
R

c�2��uÿ u1�h�2��u1� du1: �5�
A perturbation analysis based on Yvon's equation then

shows that the two-particle potential required to generate a

prescribed function h�2��u� is

� �u� � c�2��u� �6�
in which � � 1 and c�2��u� itself is derived implicitly from

h�2��u� via the convolution relation. Introducing the Fourier

components ĥ�2��H� and ĉ�2��H� into the convolution, we ®nd

ĥ�2��H� � ĉ�2��H� � Nĉ�2��H�ĥ�2��H� �7�
or

ĉ�2��H� � ĥ�2��H�
1� Nĥ�2��H� : �8�

We therefore arrive at the important result that the normal-

ized pairing force is

 E�H� �
jT�H�j2 ÿ 1

jT�H�j2 : �9�

Any Fourier components of the force must be set to zero if the

amplitude T�H� is not measured or when H � �0; 0; 0�. Note

that in this approximation each Fourier component  E�H� of

the force is independent of the target intensities jT�K�j2 of

other re¯ections K. Thus the different re¯ections behave
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nearly independently in the pair ensemble. In real space, the

Yvon approximation to the two-particle pair force can be

written as a non-linear convolution series in terms of the

levelled originless Patterson function or the levelled auto-

correlation function. Using the relation

�k�2��u� � k�2��u� ÿ hN�N ÿ 1�i; �10�
we obtain the in®nite series

N2 �u� � �k�2��u� ÿ �1=N� R �k�2��uÿ u1��k�2��u1� du1

� �1=N2� RR �k�2��uÿ u1��k�2��u1 ÿ u2�
��k�2��u2� du1 du2 ÿ . . . : �11�

The theory of ¯uids thus yields a simple approximate initial

form for the pairing force. It does not, however, give any guide

to the accuracy of the perturbation formula. In a later section,

we shall see that there are other arguments that con®rm the

approximation and that these can be developed further to

indicate the limits of accuracy of the Yvon equation when

applied to crystallographic problems.

2.3. Estimates from integral equations

The theory of ¯uids provides further more accurate esti-

mates of the two-body potentials in terms of the observed

correlation functions. These are valid even for strongly inter-

acting sets of atoms, such as hard spheres. Morita & Hiroike

(1961) and De Dominicis (1963) each give equivalent in®nite-

order diagram expansions of the potential in terms of the

functions h�2��u� and g�2��u� � �1� h�2��u��. Both their theories

do, however, assume a complete knowledge of all the Fourier

components of the relevant distributions, including the

unmeasured intensities. Their results are of the form

 �u� � log�1� h�2��u�� ÿ �h�2��u� ÿ c�2��u�� ÿ B�2��u�: �12�
Here B�2��u� is the sum of the so-called bridge diagrams. Each

bridge diagram speci®es a pair of ®xed atoms and a further set

of at least two moveable atoms with ®ve or more bonds

between the atoms. The whole pattern of a connected diagram

forms an irreducible network according to certain topological

rules. The value of any diagram is a power of N multiplied by

integrals of products of factors h�2��r1 ÿ r2� from all the bonds.

Usually, B�2� is neglected, giving rise to the well known

hypernetted chain approximation (HNC), which can then be

expanded as a power series in h�2��u�.
 �u� � log�1� h�2��u�� ÿ �h�2��u� ÿ c�2��u��
� c�2��u� ÿ 1

2 �h�2��u��2 � 1
3 �h�2��u��3 ÿ . . . (HNC): �13�

Another valuable approximation, especially for short-range

potentials acting on hard spheres, is the Percus±Yevick equa-

tion (P-Y), which may be rewritten in the form

 �u� � log�1� h�2��u�� ÿ log�1� h�2��u� ÿ c�2��u��: (P-Y):

�14�
Before leaving the topic of the many-body pair potentials, we

note that the hypernetted chain equation introduces a

coupling between different Fourier components. Thus the

Fourier transform of the series expansion above gives

 ̂�H� � ĉ�2��H� ÿ 1
2

P
K

ĥ�2��Hÿ K�ĥ�2��K� � . . . (HNC)

�15�
with leading terms

 E�H� � �jT�H�j2 ÿ 1�=jT�H�j2
ÿ �1=2N�P

K

�jT�Hÿ K�j2 ÿ 1��jT�K�j2 ÿ 1�: �16�

The correction terms proportional to 1=2N show that the

measured intensities that belong to triplets of re¯ections such

as �H;KÿH;ÿK� give rise to interference effects on the

pairing forces.

3. Symmetry and uniqueness

In paper I, we gave a short account of the uniqueness prin-

ciples for maximum-entropy ensembles. The key conclusion

was that any combination of linear constraints on the many-

particle distribution functions will generate an effectively

unique ensemble (Jaynes, 1978, 1983). We showed that, if there

are two or more distributions that satisfy the constraints

(McLachlan & Harris, 1961), any mixture of these distribu-

tions will have at least as high an entropy. Degenerate solu-

tions may occur in practice, associated with different cell

origins or opposite handedness. These general results mean

that the pair-functional ensemble generated by any feasible set

of experimental data is effectively unique, apart from degen-

eracy. We can extrapolate this conclusion to conjecture that

under normal conditions, when there is a suf®ciently complete

and accurate set of high-resolution data, the ensemble will also

contain an effectively unique structural solution of the phase

problem. The Boltzmann distribution of atomic conformations

will be as well de®ned as possible, consistent with the quality

of the data. There are certain special sets of different small

structures of point atoms that have identical Patterson func-

tions. These homometric structures (Lipson & Cochran, 1966,

p. 164) are unlikely to arise in large molecules and would be

treated as coexisting alternative solutions within the paired-

atom ensemble.

3.1. Symmetry groups

Symmetry enters into practical problems in several different

ways. First, because the constraints implied by the data refer

to an assumed molecular structure of identical particles, the

given conditions are symmetric under particle exchange. Thus,

the many-body probability f �N��rN� must be a symmetric

function of the particle coordinates �r1; r2; . . . ; rN�. Secondly,

the observed data are normally consistent with a single known

crystallographic symmetry group G. As we mentioned in the

Introduction, there is generally a choice in practical calcula-

tions between constructing a maximum-entropy ensemble in

the asymmetric unit of the group G or in the full cell with

symmetry P1. We now show that, for given data that is



consistent not only with the full group G but also with

subgroups of G having lower symmetry, the ensemble with the

highest entropy also belongs to the subgroup of highest

symmetry, that is to G itself. Therefore, if an ensemble is set up

in P1 without any special symmetry and varied to reach its

global maximum entropy under the given data conditions,

compatible with G, it should spontaneously acquire the

symmetry of G.

To prove the general result, we consider the construction of

symmetric probability distributions (Giacovazzo, 1980).

Suppose that there are G operations Og in the group that act

on an atomic cordinate r through a rotation matrix Rg and a

translation vector tg, so that

Ogr � �Rgr� tg�: �17�
Apply any symmetry operation to the full coordinates rN of all

the atoms and the full probability distribution, in which

f �N��rN� becomes f �N��OgrN�, where OgrN stands for the

N-particle coordinate vector �Ogr1;Ogr2; . . . ;OgrN�. With this

notation, we see that any unsymmetrical distribution that

satis®es the given linear constraints can be made symmetrical

by averaging over a combination of transformed distributions

under the symmetry group. For example, if Og is a twofold

rotation, then any many-particle distribution f
�N�
A can be

symmetrized about the rotation axis by constructing the

combined distribution

f �N��rN� � 1
2 �f �N�A �rN� � f

�N�
A �OgrN��; �18�

which has entropy SN � SA. By repeating this process with

other group generator symmetry elements, the distribution

can be given the full symmetry G. The symmetry transfor-

mations of the group are uniquely speci®ed by the conventions

for the choice of cell origin (Hauptman & Karle, 1956;

Giacovazzo, 1980) and the fully symmetrized ensemble for a

properly de®ned group is an equally weighted mixture of all

the permissible origins and enantiomorphs. For example, in

P1, the fully symmetrized ensemble has a continuous distri-

bution of origins and both enantiomorphs are present. In P21,

the origins are continuously distributed along the screw axis,

but the axis itself is ®xed in the cell.

3.2. Equivalent positions

The most direct way to generate a many-body distribution

with the correct symmetry of a group G is by using the stan-

dard equivalent positions of the space group, with a set of

N=G reference atoms at positions �x1; x2; . . . ; xN=G�. Each

reference atom generates a multiplet of G image points

denoted

x�G� � �xg1; xg2; . . . ; xgG�; �19�
in which �g1; g2; . . . ; gG� are the group operations, with g1 � E

as the identity operation. The image points are distinct unless

the reference atom occupies a special position in the cell. This

approach has been used in reciprocal space by Castleden

(1987) to derive phase probability distribution formulae for a

general space group. With the multiplet method, one may set

up a distribution function f �N=G��x�N=G�� in terms of the posi-

tions of the reference atoms and assign to it an entropy

SN=G � ÿ
R

f �N=G��x�N=G�� log�f �N=G��x�N=G���N=G�!� dx�N=G�:

�20�
It can then be shown by arguments similar to those used in

paper I that the maximum-entropy ensemble for a cell with

symmetry G and a given pair-correlation function is of the

same Boltzmann form as in P1 except that the pair potential

involves interactions between all the images of all the refer-

ence atoms, including pairs of different images of the same

reference atom.

	N=G�x�N=G�� � P
ig1<jg2

 �Og1xi ÿOg2xj�: �21�

This sum is over all N=G values of i and j and all G values of g1

and g2, without self-interactions, and has N�N ÿ 1�=2 terms in

all. As a simple example, to illustrate the pair potential in the

space group P�1, we take the case of just two reference atoms at

x and y. The inversion centre is at the origin. These atoms

generate the four images �x;�y and then the six image pairs

formed by these points have a total pairing potential of

	N=G �  �2x� �  �2y� � 2 �xÿ y� � 2 �x� y�: �22�
The ®rst two terms are functions of the single-particle coor-

dinates 2x; 2y and they show how the effect of symmetry is to

convert some of the pair interactions into an apparent single-

particle ®eld ��r� �  �2r�. Hence the P�1 pair-functional

ensemble will in general have a non-uniform single-particle

probability density. This non-uniform spatial density is

accounted for in reciprocal space by the ®xed signs of the

even±even±even Fourier components 2h � �2h; 2k; 2l�, which

are semi-invariant under changes of origin (Hauptman &

Karle, 1956; Hauptman, 1972; Giacovazzo, 1980). This brief

discussion of symmetry indicates how the pair-functional

theory can be extended, in principle, to any type of crystal

symmetry.

4. The perturbed Gaussian approximation

4.1. The biased ensemble

The probability distributions of the normalized Fourier

intensities within the pair-functional ensemble can be under-

stood readily in terms of the concept of natural distributions

described in Appendix C. The natural distribution for any

re¯ection H is well approximated by a Gaussian and the

normalized pairing force  E�H� represents an imposed bias. In

the space group P1, the natural distribution of the complex

structure factor E � �A� iB� is

fnat�A;B� dA dB � �1=�� exp�ÿE2� dA dB: �23�
The calculation in Appendix D shows the effect of a biasing

term which multiplies the probability by an adjustable factor

exp��E2� and leads to a new maximum-entropy distribution
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f �A;B� � �1=Z���� fnat�A;B� exp��E2�: �24�
The value of � is chosen so that the mean intensity E2 in the

revised distribution matches the observed intensity T2, that is

� � �T2 ÿ 1�=T2: �25�
We identify � with the normalized pairing force  E�H� and the

result agrees exactly with the one already derived from Yvon's

equation. The full distribution changes to

f �E2� dA dB � �1=�T2� exp�ÿE2=T2� dA dB; �26�
which is simply another Gaussian with a changed width,

adjusted to match the target T2. The pairing potential thus has

the effect of either inhibiting or amplifying the natural ¯uc-

tuations of E2 in a random collection of atoms to generate an

ensemble with the desired average properties.

The theory for space group P�1 follows similar lines, starting

from the natural distribution of the real structure factor

fnat�A� dA � �1=�2��1=2� exp�ÿ 1
2 A2� dA �27�

with the result that

� � �T2 ÿ 1�=2T2: �28�

4.2. Relaxed potentials

One dif®culty with the biased ensemble is that the pairing

force  E�H� becomes very large and negative when jT�H�j
approaches zero. This can be avoided by introducing a small

tolerance � in the ®t to the target intensities. The error

potential Y (Appendix D) provides a ®nite relaxed pairing

force. Alternatively, we can use a simpli®ed empirical form of

pairing force function that includes a small constant cut-off

intensity jTlowj2. The error potential calculation for P1 gives a

®nite pairing force

 E�H� � � �
2�T2 ÿ 1�
�T2 � �2� �W

;

W2 � �T2 ÿ �2�2 � 4�2:

�29�

The empirical cut-off function leads to a useful simple

formula, valid in both P1 and P�1. The results for P1 are

 acentric�H� �
�T2 ÿ 1�
�T2 � T2

low�
�30�

Sacentric � log
T2 � T2

low

1� T2
low

� �
ÿ T2 ÿ 1

1� T2
low

� �
: �31�

In P�1, the pairing force and the entropy are

 centric�H� � 1
2 acentric�H� �32�

Scentric�H� � 1
2 Sacentric�H� � 1

2 log 2�: �33�
In both space groups, the mean value of E2 obtained from the

biased distribution does not ®t the target exactly, especially for

the weak re¯ections:

hE2i � �T
2 � T2

low�
�1� T2

low�
: �34�

4.3. Symmetry weights

The results of the Gaussian approximation above are valid

for all space groups. This is because the probability distribu-

tion of every normalized structure factor depends principally

on the symmetry class of the re¯ection. Acentric re¯ections

have an isotropic two-dimensional distribution in the complex

�A;B� plane, while centric re¯ections have a one-dimensional

distribution in A or B only. For each space group, the

conversion from structure factors to normalized intensities

follows the usual rule (Giacovazzo, 1980; Blessing et al., 1998),

jE�H�j2 � jF�H�j2="�H��I; �35�
where

�I �
PN
j�1

f 2
j �H� �36�

is the sum of the squared atomic scattering factors and "�H� is

the statistical weight of the re¯ection. The weight depends in

turn on the centring order of the lattice and the multiplicity

of the individual re¯ection H (Stewart & Karle, 1976). We

conclude that the biased Gaussian approach gives a correctly

weighted ®rst approximation to the pairing force in every

space group.

4.4. Limits of the Gaussian approximation

When the observed intensity jTj2 is very large, the biased

Gaussian distribution becomes broad and there are large

¯uctuations of E2 within the pair-functional ensemble. The

root-mean-square intensity ¯uctuation ��I�2 � h�E2 ÿ T2�2i
becomes large, with �I � jTj2, and the mode H becomes

unstable. This instability associated with the strong re¯ections

can be countered by using an additional protective term in the

total many-body potential. For example, the pairing force can

be mixed with a term proportional to the correlation coef®-

cient between the intensity ¯uctuations of the model and the

target. This term will keep the value of E2 closer to T2.

Another source of error is that the natural probability

distributions of the structure factors themselves deviate from

the Gaussian limit when E2 is large. A careful analysis of the

natural distribution up to the fourth order in the Gram±

Charlier series (Cramer, 1951; Klug, 1958; Giacovazzo, 1980)

gives

fnat�A;B� � �1=�� exp�ÿE2��1ÿ �1=4N��E4 ÿ 4E2 � 2�� �37�
with signi®cant corrections only when E2 approaches N1=2.

Another analysis by the independent-atom maximum-entropy

approximation (Bricogne, 1984) gives an expansion of log fnat

in terms of unitary structure factors U � E=N1=2. For small

values of U, this method gives a power-series expansion

fnat�A;B� � �1=�� exp�ÿE2��1ÿ �1=4N�E4 ÿ �5=36N2�E6�:
�38�

The independent-atom entropy is derived from an ensemble,

with speci®ed phases, which is different from the one consid-

ered here, and so its entropy has no direct relation with the

entropy of the pair-functional ensemble used in this paper.



Clearly, when there are more than 100 atoms, any correc-

tions to the Gaussian distributions for strong re¯ections are

likely to be important only when E2 approaches ten, and will

affect only a very small fraction of the observed re¯ections.

The corrections caused by weak interference effects between

different re¯ections may be more important, since a large

number of triplets and quartets can all contribute to a single

potential.

In a later paper, we shall describe the many-body theory of

the strong coupling limit of the paired-atom ensemble. This

gives an accurate expression for the pairing force over the

entire range of intensities.

5. Several types of atom

If the cell contains two or more types of atom, with different

scattering factors fa; fb; . . ., the ensemble behaves like a multi-

component ¯uid mixture (Morita & Hiroike, 1961). The

generalized maximum-entropy ensemble that represents a

mixture with a given observed originless Patterson function is

described in Appendix E. The most important conclusion is

that atoms of different types interact with potentials of the

form 	 � fafb �riA ÿ rjB� which are proportional to their

scattering factors. The pairing force  �u� is the same for all the

atoms and is estimated in the Gaussian approximation, as

before. The normalized pairing force  E�H� can still be

expressed in terms of the normalized target amplitude

jT�H�j2 � jFT�H�j2=�I , with the result that

 E�H� � �I ̂�H� �
jT�H�j2 ÿ 1

jT�H�j2 : �39�

6. Exclusion effects

Exclusion effects arise when two atoms cannot occupy the

same space in the cell. The simplest case is in the point-atom

model, where N point atoms of scattering factor f are

sprinkled randomly over a ®ne grid with L vertices. Here it

is easy to show, by Parseval's theorem, that the mean-square

structure factor for h 6� 0 is

hjF�h�j2i � Nf 2�1ÿ xfill�; �40�
where xfill � N=L is the ®lling factor of the grid or the fraction

of occupied points. This correction �1ÿ xfill� should be

included in the natural Gaussian distribution of any structure

factor. A similar correction occurs in the structure factors of a

uniform molecular envelope and is related to Babinet's prin-

ciple. A general further treatment of exclusion effects would

be complicated, even for hard-sphere atoms.

7. Numerical estimates

It is useful to estimate the expected total pairing potential and

entropy of the pair ensemble that matches a typical set of

measured X-ray intensities. In the Gaussian approximation, all

the nR measured re¯ections contribute independently and so

the mean expected values can be written

	expec � nRh �T�inat; Sexpec � nRhS�T�inat; �41�
where the averages are performed over the natural probability

distribution of a typical target amplitude T. Thus, for a

particular measured re¯ection H and a de®nite value of T,

 �T� �  E�H�fjT�H�j2 ÿ 1g � ��T��T2 ÿ 1�; �42�
with ��T� given by one of the empirical formulae in x4. Also,

S�T� is the estimated value of �Sÿ Sflat�. For example, with the

intensity cut-off formula averaged over the Gaussian distri-

butions, we obtain

h �T�iacentric �
Z 1

0

�T2 ÿ 1�2
�T2 � T2

low�
exp�ÿT2�2T dT �43�

h �T�icentric �
1

�2��1=2

Z 1
ÿ1

�T2 ÿ 1�2
2�T2 � T2

low�
exp�ÿ 1

2 T2� dT �44�

with similar expressions for the entropies. The results are

collected in Table 1. For example, in the space group P1, using

the intensity cut-off formula with T2
low � 0:25, we obtain

	expec � 0:8442nR; Sexpec � ÿ0:2679nR: �45�
The error potential with � � 0:25 gives similar values. Since 	
and S are both logarithms, respectively of a likelihood and a

volume in con®guration space, we can estimate that each

re¯ection measured multiplies the likelihood by 2.326 and

divides the acceptable volume by 1.307. The measurements

restrict the degrees of freedom of each atom in proportion to

nR=N, the number of re¯ections per atom.

8. Conclusions

In summary, this paper, together with the basic principles

described in paper I, completes the formal framework of the

pair-functional method, up to the point where it is possible to

generate the pairing forces that ®t any set of experimental

data. Further developments of the theory will analyse the

probability distributions of structure factors within the paired-
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Table 1
Pair potential and entropy per re¯ection.

Cut-off intensity estimate

Quantity Acentric Centric T2
low

	 0.8442 0.7344 0.25
1.3368 1.3368 0.10

S ÿ0.2679 ÿ0.2162 0.25
ÿ0.3825 ÿ0.3225 0.10

Error potential estimate

Quantity Acentric Centric �

	 0.9046 0.9590 0.25
1.5141 1.8218 0.10

S ÿ0.3226 ÿ0.2893 0.25
ÿ0.4378 ÿ0.3919 0.10
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atom ensemble and look at the limit of strong coupling when

the pairing forces are very large. These ideas will lead to the

temperature-dependent self-consistent-®eld approximation as

a practical method for solving structures. The main results of

the present work on pairing forces are:

(i) The many-body theory shows that the forces associated

with different re¯ections are almost independent of one

another and they are proportional to the well known direct

correlation function of the analogous ¯uid.

(ii) Small corrections of order 1=N arise from interference

effects between different re¯ections or when strong re¯ections

have E2 of order N1=2. But these details may not be critical for

solving structures.

(iii) The biased Gaussian method gives a useful correct ®rst-

order guide to the results of the many-body theory.

(iv) The ensemble for a cell with higher symmetry is also

unique and adopts the highest correct symmetry. There are

simple rules for calculating the forces.

(v) The ensemble can handle different types of atom.

(vi) The strong pairing forces that are needed to match very

weak re¯ections should be moderated by using a relaxed ®t to

these intensities.

Given these principles, the programme for applying the

pair-functional method in crystallography needs to follow two

further directions. One is to construct specialized ensembles

for each experimental application, such as isomorphous

replacement, solvent ¯attening, fragment recognition. The

other is to develop computing methods that use the pair

potential to solve or re®ne structures, going beyond the

elementary methods described in paper II. The pair potential

of a set of atoms, or a positive density map, is not hard to

calculate and could be included as an option in many kinds of

standard re®nement programs.

APPENDIX A
Grand distributions

Many important theoretical questions are best treated by

using a grand ensemble in the cell, where the number of

particles is not precisely known but has a de®nite average

value hNi. A grand ensemble is described by a series of

distributions f �N; rN� for the spatial arrangement of each

possible number of atoms. These functions are normalized so

that

A � P1
N�0

R
f �N; rN� drN � 1 �46�

hNi � P1
N�0

R
Nf �N; rN� drN: �47�

It may also be useful to write each of these distributions in the

form

f �N; rN� � P�N�f �N��rN� �48�

in which P�N� is the probability that the system contains

exactly N particles and f �N� is a normalized spatial probability.

The single-particle and two-particle distribution functions in

the grand ensemble are

��1��x� � P1
N�0

PN
i�1

R
��ri ÿ x�f �N; rN� drN �49�

��2��x; y� � P1
N�0

P
i6�j

RR
��ri ÿ x���rj ÿ y�f �N; rN� drN �50�

and they obey the conditionsR
��1��x� dx � hNi �51�RR

��2��x; y� dx dy � hN�N ÿ 1�i: �52�
The scaled pair distributions are then de®ned analogously as

g�2��r1; r2� � ��2��r1; r2�=��1��r1���1��r2� �53�
with

k�2��u� � R ��2��r; r� u� dr �54�
and in a uniform ensemble this gives

h�2��u� � g�2��u� ÿ 1: �55�
The entropy of the grand ensemble requires a non-uniform

prior weight mN � 1=N! to be given to the particle number N

and the resulting entropy must therefore be de®ned as

S � ÿP1
N�0

R
f �N; rN� log�f �N; rN�N!� drN; �56�

which can be broken down into parts that depend separately

on P�N� and f �N��rN�:
S � ÿP

N

P�N� log�P�N�N!� �P
N

P�N�SN: �57�

When the value of N is known exactly, with N � N0 and

P�N0� � 1, the grand entropy reduces correctly to

SN0
ÿ log�N0!�. Another important special case is when the

mean value of N is known to be M and there are no spatial

constraints at all. Now the maximum-entropy grand ensemble

is a simple Poisson distribution over N with f �N��rN� � 1 for

each geometrical factor and

P�N� � exp�ÿM��MN=N!�; hNi � M: �58�

APPENDIX B
Grand ensemble with given particle distributions

The grand ensemble is used for general theoretical purposes,

such as the construction of many-body diagrams. The relevant

maximum-entropy distributions are constructed in the usual

way, using the normalized distribution functions f �N; rN� to

reproduce the desired average values of hNi, ��1��x� and

��2��x; y�. The Lagrange multipliers yield the equations

�S� ��A� ��hNi � R ��x����1��x� dx

� 1
2

RR
 �x; y����2��x; y� dx dy � 0 �59�

and the solution depends on the classical grand partition

function �, with � � 1.



f �N; rN� � �1=���exp���N�=N!� exp���N�rN��; �60�
where

� � P1
N�0

�exp���N�=N!�ZN exp���N�rN��

� � ÿ log �� 1:

�61�

The resultant total entropy is

S�max:� � log �ÿ �hNi ÿ h�i: �62�
The probability distribution for the number of particles in the

grand sample is a distorted Poisson distribution with biases

proportional to ZN :

P�N� � �1=���exp���N�=N!�ZN: �63�

APPENDIX C
Entropy in terms of natural probability distributions

Under some conditions, one may obtain a useful aproximation

for the maximum-entropy distributions of a quantity from

limited knowledge. Consider a general quantity X�rN� which is

a function of the fractional cell coordinates of N atoms,

rN � �r1; r2; . . . ; rN�, where r � �x; y; z�. The volume of an

element of the 3N-dimensional con®guration space is written

as drN and the complete volume isR
drN � 1: �64�

We de®ne the density of states, or volume of con®guration

space, that corresponds to a particular value X 0 to be the

volume of all points for which X�rN� � X 0 within a range dX 0,
through the equation

ÿ�X 0� � R ��X�rN� ÿ X 0� drN; �65�
where � is the Dirac delta function. This is normalized so thatR

ÿ�X 0� dX 0 � 1: �66�
The natural probability distribution of X within the N-particle

space rN with uniform weights is derived from the uniform

distribution f �N��rN� � 1, whose entropy is Snat � 1. The

natural probability distribution thus de®ned is

fnat�X� dX � ÿ�X� dX �67�
with the mean value

hXinat �
R

Xÿ�X� dX: �68�
Now consider the entropy in rN of a special form of probability

distribution f �X� dX over X, in which f �X� is any function, but

the probability corresponding to any particular value X 0 is

smeared evenly over the whole region of rN for which

X�rN� � X 0. Thus, at any point the generated distribution is

f �N��rN� drN � �f �X 0�=ÿ�X 0�� drN: �69�
The entropy of the special ensemble is

SN � ÿ
R

f �N��rN� log f �N��rN� drN

� ÿ R f �X� log�f �X�=ÿ�X�� dX �70�
and corresponds to the entropy of a distribution in the

reduced space of X with a prior weighting of ÿ�X� or

equivalently fnat�X�. The standard maximum-entropy method

may now be used to construct a biased ensemble in the

reduced space, which matches some desired non-natural value

of hXi. The result is

f �X� � �1=Z����ÿ�X� exp��X�
� �1=Z����fnat�X� exp��X� �71�

with

Z��� � R fnat�X� exp��X� dX � R exp��X�rN�� drN �72�
for which the entropy is

S � log Z��� ÿ �hXi �73�
and the biased mean value is

hXi � @ log Z���=@�: �74�
Only the natural distribution fnat�X� is needed for this

purpose. The detailed distribution of the values of X within rN

is irrelevant. The numerical value of � needed to match a

given target average hXi � XT may be calulated by mini-

mizing the target potential

Q��� � log Z��� ÿ XT�: �75�

APPENDIX D
The Gaussian distribution of structure factors

An important application of the natural distributions is to the

normalized complex structure factor E � �A� iB� in the

space group P1. Here the natural distribution is well

approximated by a Gaussian

fnat�A;B� dA dB � �1=�� exp�ÿ�A2 � B2�� dA dB

� exp�ÿE2�2E dE: �76�
We seek the maximum-entropy ensemble which reproduces a

given target value of E2, hE2i � T2. The distribution in the

reduced space has the form

f �A;B� � �1=Z����fnat�A;B� exp��E2�
� �1=���1ÿ �� exp�ÿ�1ÿ ��E2�; �77�

in which

Z��� � 1=�1ÿ �� �78�
and

T2 � @�log Z�=@� � 1=�1ÿ ��: �79�
Thus the required solution has

� � �T2 ÿ 1�=T2; S � ÿ�T2 ÿ 1� � log T2: �80�
This maximum-entropy ensemble for E2 is an isotropic two-

dimensional Gaussian in the complex plane, expanded or
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contracted according as to whether T2 is greater or less than

the natural average hE2inat � 1. The real and imaginary parts

¯uctuate independently about zero, with hA2i � hB2i � 1
2 T2.

The same form of solution is valid for correctly scaled acentric

re¯ections in every space group.

The biased Gaussian ensemble breaks down as a useful

approximation when T approaches zero. The reason for this is

simply that a structure factor of exactly zero is an extremely

improbable event in any random collection of atoms (except

for reasons of symmetry). Therefore, the pairing force �
needed to ensure a small ensemble average value for T

becomes very large and negative. Also, the entropy S diverges

like log T2. In practice, it is important not to distort the whole

force ®eld by trying to ®t small structure factors with high

precision and we shall be content to ®t the intensities within a

small tolerance �. The calculation uses the dual function Q���
and the error potential Y��� de®ned in Appendix C of paper I,

in which

Y��� � Q� 1
2 �

2�2; �81�
Q � log Z��� ÿ �T2: �82�

The unique minimum of Y��� as a function of �, for given T2

and �, is de®ned by the condition

@Y=@� � 1=�1ÿ �� � ��2 ÿ T2 � 0 �83�
and � is the root of this quadratic equation.

� � 2�T2 ÿ 1�=��T2 � �2� �W� �84�
W2 � �T2 ÿ �2�2 � 4�2: �85�

The solution is ®nite when T � 0, where W2 � �4�2 � �4�, and

if � is small the limit is

� � ÿ1=� �T � 0�: �86�
In practice, we use a simpler approximation for the acentric

re¯ections. This is to adjust all the target intensities by adding

a small empirical correction T2
low to them. The pairing force

and the mean ®tted intensity become

�acentric �
�T2 ÿ 1�
�T2 � T2

low�
�87�

hE2i � �T
2 � T2

low�
�1� T2

low�
�88�

and the effective entropy is

Sacentric � log
T2 � T2

low

1� T2
low

� �
ÿ T2 ÿ 1

1� T2
low

� �
: �89�

In this empirical potential, T2
low takes the place of �.

The theory for centric re¯ections follows similar lines.

Starting from the Gaussian natural distribution of the real

amplitude E � A and applying the bias, we obtain

fnat�A� dA � �1=�2��1=2� exp�ÿ 1
2 A2� dA �90�

f �A� � �1=Z���� exp�ÿ 1
2 �1ÿ 2��A2� �91�

with

log Z��� � 1
2 log�2�� ÿ 1

2 log�1ÿ 2��: �92�

The required force and the entropy of the centric solution are

� � �T2 ÿ 1�=2T2; S � 1
2 log 2�� log T ÿ 1

2 �T2 ÿ 1�: �93�
Except for the constant part 1

2 log 2�, these values are half as

large as for the acentric re¯ections. The error potential esti-

mate leads to a similar condition

@Y=@� � 1=�1ÿ 2�� � ��2 ÿ T2 � 0: �94�
The empirically adjusted force is

�centric � 1
2

�T2 ÿ 1�
�T2 � T2

low�
�95�

with the entropy

Scentric � 1
2 log�2�� � 1

2 log
T2 � T2

low

1� T2
low

� �
ÿ 1

2

T2 ÿ 1

1� T2
low

� �
: �96�

Lastly, the pair-functional ensemble with the highest possible

entropy is the featureless random distribution in which T2 � 1

for every re¯ection. This de®nes a reference level Sflat for the

entropy of each re¯ection, with the values 0; 1
2 log 2� for

acentric and centric re¯ections. The difference between S and

Sflat measures the degree of constraint imposed on the

ensemble by the experimental data.

APPENDIX E
Cell with two types of atom

Here we derive the pair-functional ensemble for a cell that

contains NA atoms of type A and NB atoms of type B, with

different scattering factors fa and fb. The many-particle

probability function is a function of the joint coordinates

�rNA
A ; r

NB
B � and is normalized so that

AN �
R

f �N��rNA
A ; r

NB
B � dr

NA
A dr

NB
B � 1: �97�

The associated entropy is taken as

SN � ÿ
R

f �N� log f �N� dr
NA
A dr

NB
B ÿ log�NA!NB!�: �98�

We suppose that the average phased structure factors and

originless intensities are to be matched for a certain set of

re¯ections H, with the target values

hF�H�i � G�H�; hI�2��H�i � J�H�: �99�
The structure factors and intensities are de®ned in terms of the

Fourier transforms of the probability distributions �A�H� and

�B�H� for the two types of particle.

F�H� � fa�A�H� � fb�B�H� �100�
I�2��H� � jF�H�j2 ÿ�I : �101�

Here

�A�H� �
PNA

j�1

exp�2�iH � rjA�;

�B�H� �
PNB

j�1

exp�2�iH � rjB�
�102�

and



�I � NAf 2
a � NBf 2

b : �103�
The method of Lagrange multipliers gives the stationary

condition

�SN � ��AN �
P
H

�̂�ÿH��G�H� � 1
2

P
H

 ̂�H��J�H� � 0:

�104�
The many-particle equilibrium probability distribution for the

system is

f �N��rNA
A ; r

NB
B � � �1=ZN� exp���N�rNA

A ; r
NB
B ��; �105�

where � � 1 and �N is the combined statistical potential

�N �
P
H

�̂�ÿH��fa�A�H� � fb�B�H��

� 1
2

P
H

 ̂�H�fjfa�A�H� � fb�B�H�j2 ÿ�Ig: �106�

The potential takes a rather simpler form in real space, in

terms of the particle coordinates. Now the single-particle part

of �N is

XN �
PNA

j�1

fa��rjA� �
PNB

j�1

fb��rjB� �107�

and the paired particle terms contain N�N ÿ 1�=2 interactions

between atoms of all types.

	N �
P
i<j

f 2
a �riA ÿ rjA� �

P
i<j

f 2
b �riB ÿ rjB�

�P
i;j

fafb �riA ÿ rjB�: �108�

The distributions of both types of atom are speci®ed by the

same ®eld functions ��r� and  �u� but the ®elds act on the two

types with different strengths. Thus, fa and fb behave like

different effective atomic charges in a system of electrically

charged particles.

Up to this point, the analysis is exact. It is rather more

dif®cult to estimate the pair potentials, although in principle

we could use the theory of the direct correlation function of a

¯uid mixture, which is expressed in the form of a matrix

(Morita & Hiroike, 1961; Hansen & McDonald, 1986).

Here we use the simpler method of natural probability

distributions to derive an approximation for the pair potential

 ̂�H� belonging to a re¯ection H for the simplest case where

the single-particle electron-density variation G�H� is uncon-

strained and the target intensity is

hjF�H�2ji � J�H� ��I � jFT�H�j2: �109�
The natural probability distributions for the separate

normalized structure factors EA�H� and EB�H� of the two

atom types are independent two-dimensional Gaussians with

variances of unity. The resulting combined natural distribution

of F�H� � AH � iBH is a similar Gaussian

fnat�AH;BH� � �1=��I� exp�ÿ�A2
H � B2

H�=�I �: �110�
The maximum-entropy ensemble includes a Boltzmann factor

for the re¯ection H of the form

exp 	 � expf ̂�H��jF�H�j2 ÿ�I �g �111�
and so, following the standard natural distribution method, the

perturbed distribution is

f �AH;BH� � �1=Z� ���1=��I� expf�ÿ�A2
H � B2

H��
� �1=�I ÿ  ̂�H��g: �112�

The value of  ̂�H� must be chosen to match a standard

Gaussian form, with the target variance

f �AH;BH� � �1=�jFT�H�j2� exp�ÿ�A2
H � B2

H�=jFT�H�j2�
�113�

and this leads to the estimated potential

 ̂�H� � jFT�H�j2 ÿ�I

�IjFT�H�j2
: �114�

The Gaussian approximation for the distribution of jF�H�j
should be valid for a reasonably wide range of amplitudes,

provided that both NA and NB are large.

I thank Ian McDonald and Robert Harris for discussions

about the statistical theory of ¯uids.
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